
Machine Vision and Applications (2016) 27:175–191
DOI 10.1007/s00138-015-0735-5

ORIGINAL PAPER

Vision-based approach towards lane line detection and vehicle
localization

Xinxin Du1 · Kok Kiong Tan1

Received: 25 June 2014 / Revised: 27 September 2015 / Accepted: 1 November 2015 / Published online: 19 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Localization of the vehicle with respect to road
lanes plays a critical role in the advances of making the vehi-
cle fully autonomous. Vision based road lane line detection
provides a feasible and low cost solution as the vehicle pose
can be derived from the detection. While good progress has
been made, the road lane line detection has remained an
open one, given challenging road appearances with shad-
ows, varying lighting conditions, worn-out lane lines etc. In
this paper, we propose a more robust vision-based approach
with respect to these challenges. The approach incorporates
four key steps. Lane line pixels are first pooled with a ridge
detector. An effective noise filtering mechanism will next
remove noise pixels to a large extent. A modified version of
sequential RANdom Sample Consensus) is then adopted in a
model fitting procedure to ensure each lane line in the image
is captured correctly. Finally, if lane lines on both sides of the
road exist, a parallelism reinforcement technique is imposed
to improve the model accuracy. The results obtained show
that the proposed approach is able to detect the lane lines
accurately and at a high success rate compared to current
approaches. The model derived from the lane line detection
is capable of generating precise and consistent vehicle local-
ization information with respect to road lane lines, including
road geometry, vehicle position and orientation.
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1 Introduction

Recent advances in autonomous vehicles have drawn much
attention and interests from researchers, media and the gen-
eral public. Localization of the vehicle with respect to road
lanes is one of the fundamental functions to be enabled in
these vehicles to assimilate them into our everyday lives.
Vision-based lane line detection is a common approach to
address such localization problems. The vehicle position and
orientation with respect to the road can be derived from the
detection results.

A vast amount of research work has been done in this
domain since a few decades ago [24]. However, it is yet to be
completely solved and has remained as a challenging prob-
lem due to the wide range of uncertainties in real traffic road
conditions, which may include shadows from cars and trees,
variation of lighting conditions, worn-out lane markings and
other markings such as directional arrows, warning words
and zebra crossings.

A detailed comparison on existing lane detection app-
roaches is provided byHillel et al. in [10].Most of them share
two common steps: (1) Lane line candidate extraction using
different image features such as edges [14,18] and colour [23]
[22], or usingmachine learningmethods such as support vec-
tor machine [12], boost classification [6,7]. (2)Model fitting
to straight lines [11] or parametric curves [15,21], which can
be used to derive vehicle pose for localization.

Some algorithms may also include a third tracking step to
impose temporal continuity, where the detection result in the
current frame is used to guide the next search through filter
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mechanisms, such as Kalman filter [2,18] and particle filter
[4,12].

A common disadvantage of a feature-based lane line can-
didate extraction is the sensitivity to noise because it ismainly
done through threshholding gradient magnitude. However,
edges of shadows and surrounding objects tend to have higher
gradient values while poor lighting conditions result in lower
gradient values at the lane line boundaries. Thus, gradient
threshholding alone is not feasible without other complex
adaptation mechanisms. Another disadvantage is that it is
limited to a local view [13]. A feature point is detected with
only two pixels in the image without considering its connec-
tivity and similarity to the neighbouring pixels.

The machine learning-based approach is subject to the
selection of training data and off line training results. To
fulfill a good detection, the training set has to contain enough
samples under a variety of scenarios. If new situations occur
during the test, the approach may fail.

To resolve these issues, López in [16] introduced a newly
defined feature ’ridge’, which is claimed to be more suitable
than other features (such as edge or colour) to this prob-
lem. The noise pixels are then filtered based on ridgeness
magnitude and ridge orientation. In model fitting, the author
adopted RANSAC to fit a pair of lane lines (right and left
lane lines) simultaneously based on the given camera height
and pitch angle.

However, the algorithm suffers from the following short-
comings:

1. The noise filtering mechanism is not robust. The author
assumed ridge orientation was always along lane line
direction and he used this feature to filter out some pixels.
But this is not true in the presence of shadows, uneven
distribution of lane line painting, worn-out lane lines etc.

2. The filtering based on a fixed ridgeness threshold is not
suitable, which leads to under-filtering and over-filtering
issues in some situations.

3. Due to the nature of the model fitting method in [16],
when the lane exists on only one side, the algorithm will
not work properly.

4. The fittedmodel accuracy is sensitive to the camera view-
ing angle. Braking/acceleration and road surface changes
change the pitch angel. To compensate the variation, the
author assigned a series of discrete valueswithin a certain
range to pitch angle. But the results due to this variation
is still clearly lingering especially when the actual pitch
angle is outside the prescribed range.

5. The hyperbola road model itself is not able to provide an
accurate fitting for a straight road.

Motivated by these unresolved yet important shortcom-
ings, a more robust lane detection approach based on ’ridge’
identification and incorporation of the modified sequential

RANSAC in the model fitting procedure is proposed in this
paper to solve the autonomous vehicle localization challenge.
The main contributions of the paper include:

1. Implementation of an effective noise filteringmechanism
based on adaptive threshold after ridge detection, thus
increasing the processing speed and generating improved
results.

2. Removal of the effects from camera pitch angle variation
on model fitting. In the proposed approach, the model
fitting does not rely on having the pitch angle fixed a
priori, instead the pitch angle is back calculated from the
fitted model.

3. Lane detection on one side of the road even if the other
side is missing.

4. Incorporation of a modified version of sequential
RANSAC algorithm inmodel fitting to capture every sin-
gle lane line in the image independently.

5. Fitting multiple road models simultaneously, including
straight line and hyperbola, in the quest for the best
matching results.

The paper is organized as follows: Sect. 2 provides a brief
introduction to the concept of a ridge. Section 3 will focus
on the filtering of noise pixels after the ridgeness threshold-
ing. The modified version of sequential RANSAC for model
fitting is elaborated in Sect. 4. Section 5 will illustrate the
experimental validation results and the conclusions are drawn
in Sect. 6.

2 Ridgeness

The ridge of a grey-level road image refers to the centre
axis of the elongated and bright lane lines. The concept can
be visualised by considering the image as a landscape with
intensity represented along the z axis or height [16]. The
intensity increases as we get closer to the centre axis of lane
lines, which forms the shape of a ridge as illustrated in Fig. 1.
Moreover, ridgeness quantifies howwell the pixel neighbour-
hood resembles a ridge. At the centre axis of the lane line, its
neighbourhood at both sides contributes to the formation of
the ridge; therefore, it will definitely have a higher ridgeness

ROI

Fig. 1 Concept visualisation of ridge
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value. This observation can enable the detection on lane lines
by a simple thresholding method. This is also one of the root
factors explaining why ridgeness is a more robust feature
than edge or colour as it takes its neighbourhood pixels into
account instead of just two pixels.

Ridgeness is a loosely defined terminology and there exist
different versions of mathematical definitions. In this paper,
we adopt the version of López in [16] to compute ridgeness
since the approach based on it has been proven to be largely
effective.

First, the original grey-level image L(x) is convoluted (*)
with a 2D Gaussian filter Gσd . L(x) is taken as the intensity
value (I) in HSI colour space as it has clear advantages than
H or S or other colour spaces (such as RGB) [22].

Lσd (x) = Gσd (x) ∗ L(x) (1)

Gσd is anisotropicGaussian kernel with covariancematrix∑ = diag(σd x , σd y) where σd y is constant and σd x
increases with row number which is set equal to half of the
lane line width. It depends on the camera focal length and
pitch angle ϕ.

The gradient vector field at each pixel along row (u) and
column (v) direction is computed as

wσd (x) = (∂u Lσd (x), ∂vLσd (x))
T (2)

A 2 × 2 matrix sσd (x), similar to Hessian matrix, is com-
puted by dot product (·) of gradient vector for each pixel:

sσd (x) = wσd (x) · wT
σd

(x) (3)

The structure tensor field is computed by convoluting each
sσd (x) matrix with another Gaussian filter Gσi :

Sσd σi (x) = Gσi (x) ∗ sσd (x) (4)

The eigenvector w′
σd σi (x) is obtained corresponding to

the highest eigenvalue of Sσd σi . There exists explicit solution
for eigenvector and eigenvalue to speed up the computation.

Projecting w′
σd σi (x) onto wσd (x) as:

pσd σi (x) = w′
σd σi

T (x) · wσd (x) (5)

Define a new vector field w̃σd σi (x) at each pixel as:

w̃σd σi (x) = sign(pσd σi (x))w
′
σd σi

T (x) (6)

The ridgeness is thendefinedby the positive value of diver-
gence of w̃σd σi (x).

k̃σd σi (x) = −div(w̃σd σi (x)) (7)

ROI 

Fig. 2 Illustration on ridge orientation w̃σd σi (x)

Fig. 3 Original image and its corresponding grey-level image based
on ridgeness value. a Original, b Ridgeness

Figure 2 illustrates the w̃σd σi (x) field orientation of ROI
in the original image. The green box highlights the corre-
sponding lane line boundaries. It shows that due to the tree
shadows, w̃σd σi (x) orientation deviates from lane line direc-
tion, especially for the pixels along the lane line medial axis.

Figure 3 provides an example of the grey-level image
based on ridgeness value. It is clear that themedial axis of the
lane line is brighter than the rest, which enables the following
processing algorithms.

For more detailed explanation on the terminologies and
parameter setups, interested readers may refer to [16].

3 Noise filtering mechanism

As mentioned previously, the original approach in removing
noise pixels is not robust and effective since a fixed thresh-
old is implemented and w̃σd σi (x) is not always along lane
line direction. Here, we propose an adaptive thresholding
mechanism based on ridgeness value, which avoids check-
ing w̃σd σi (x) direction.

Based on the fact that lane line medial axis always has
higher ridgeness value, it can be selected by thresholding.
To have an adaptive threshold, the ridgeness histogram is
needed.

The image size is 480 × 640, but the image processing
takes effect on the bottom half of the image only to save
processing time.Andbased on the camera setup, only the bot-
tom half contains useful information for lane line detection
while the top half mainly consists of sky and road portions
that are too far to see. The number of pixels consisting of
the longest lane medial axis for one line must be less than
240 + 640 = 880. Since lane lines exist on both sides and
sometimes, double white lane lines may be used on both
sides, the number of pixels for lane medal axis must be less
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Fig. 4 Histogram based on the ridgeness image

than 4× 880 = 3520. Therefore, 3520 can be a conservative
estimation of the maximum number of lane line medial axis
pixels. In other words, the number of pixels resulting from
lane line detection must be less than 3520.

After the ridgeness calculation, the histogram of the rid-
geness grey-level image can be extracted, varying from −2
to 2 with a bin size of 0.1. Each bin is summed in descending
order until the number of pixels exceeds 3520. The corre-
sponding minimum ridgeness value in that bin will be set as
the threshold. Figure 4 shows the histogram plot based on
Fig. 3b and the summing up process.

After thresholding, as shown in Fig. 5c, almost all the
lane line medial axis pixels are extracted. But some of
the medial axis are disconnected and a lot of noise pixels
still exist, resulting from shadows and irregularities on the
pavements.

To compensate for these, first a morphographic ‘bridge’
operation to connect pixels with gap of one pixel is applied
and then followed by a connected component labelling opera-
tion. The corresponding component is removed if its number
of pixels is less than a prescribed threshold number. This
threshold can be worked out based on the minimum number
of pixels required to form a lane line segment medial axis.
For breaking lane lines, according to our on-field measure-

ment, the shortest segment is about 1 m. Based on the camera
nominal pitch angle, its intrinsic parameters and assuming a
segment at the furthest distance in the camera view (bottom
half), theminimum number can be calculated approximately.
In our setup, the threshold number is 6.

Labels are further removed if the average intensity is less
than a threshold as highlighted in [22]. The threshold is set
conservatively low to cater for the case when lane lines are
obscured by strong shadows or the illumination condition is
poor. The number implemented here is 150.

Figure 5 illustrates how the lane line candidate pixels are
selected from the original image systematically using the
proposed noise filteringmechanism. The red pixels in Fig. 5d
indicate the effects frombridge connection. Both quantitative
and qualitative comparisons between the original approach
in [16] and our proposed one are presented in Sect. 5. They
show that the proposed approach can outperform the original
one most of the time.

4 Model fitting with modified sequential RANSAC

4.1 Lane line model construction

Many lane line models have been proposed in the literature,
ranging from straight lines to spline and conical curves. For
example, in [9], circle arc model was implemented and the
best fitting circlewas foundon the road surface using aHough
transform. There is no clear conclusion on which one is the
best. However intuitively, assuming the road surface to be
flat and lane lines to be parallel, there should exist an explicit
relationship between the real road lane line geometry and the
projected lane line in the image subject to the camera position
and orientation. This kind of relationship can provide useful
information to autonomous vehicle navigation system.

Leveraging on this consideration,we adopt the roadmodel
proposed by Guiducci [8]. The simplified version provided

Fig. 5 Proposed noise filtering mechanism. aOriginal, b ridgeness, c ridgeness threshold, d bridge connection, emin. structure removal, f intensity
check
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in [16] and [1] is shown in (8) and (9) for the left and right
lanes, respectively.

ul = Eu

(
θ

cosϕ
+ cosϕ

HEv

xc(vl + Ev tan ϕ)

+ EvHC0/cos3ϕ

4(vl + Ev tan ϕ)

)

(8)

ur = Eu

(
θ

cosϕ
− cosϕ

HEv

dr (vr + Ev tan ϕ)

+ EvHC0/cos3ϕ

4(vr + Ev tan ϕ)

)

(9)

To fully understand the model, let us define three coor-
dinate systems attached to global (or road), car and camera,
respectively, with the same origin at the camera principal
point. θ and ϕ are camera yaw and pitch angle with respect
to global system (Fig. 6).

(u, v) defines the horizontal and vertical pixel count of
one pixel to the image principal point. Eu and Ev refer to
the camera horizontal and vertical focal lengths in the unit of
pixel/m. All these parameters (principal point, Eu and Ev)
are camera dependent and can be obtained uniquely through
calibration. Interested readersmay refer toBouguet’s toolbox
on the calibration process [3].

H is the height of the camera to the road surface, which
can be measured in advance.

ϕ is the camera pitch angle. Ideally, this is a fixed value
and can be measured in advance as well. However, in real-
ity, it varies when the car is slowed/stopped with the brake,
accelerating, running on uneven road, etc. The value is so
critical to the final fitting result that it cannot be treated as a
constant. To compensate for the variation, in [16], the author
assigned a series of discrete values within a certain range.
However, this approach is sensitive to quantization noises.
In this paper, we will consider ϕ as an unknown and will
show that it can be back-estimated instead accurately.

θ defines the angle between car heading direction and road
tangent.

C0 is the lateral curvature of real road with unit ofm−1. If
the road is straight, C0 = 0 and (8) and (9) represent a line.

xc and dr represent the distances from the car to the left
and right road lane lines. L = xc + dr is the lane width.

For each side of the road model, there are four unknown
parameters to be determined through model fitting, namely
ϕ, θ,C0 and xc(or dr ). Although there are parallelism rela-
tionships between left and right lanes, we will ignore this
relationship and take them to be independent for the first
pass model fitting and only merge/fuse the results based on
this relationship in a latter process when both left and right
lanes are confirmed to exist. This is to cater to the case when
the lane line only exists on one side.

To facilitate the model fitting process, the road model can
be further simplified to the form of a hyperbola with A, B,
C and D as unknowns.

u = A

v − D
+ Bv + C (10)

In the matrix form (Cr is symmetrical):

PT · Cr · P =
⎡

⎣
u
v

1

⎤

⎦

T
⎡

⎢
⎣

0 −0.5 0.5D

−0.5 B 0.5E

0.5D 0.5E F

⎤

⎥
⎦

⎡

⎣
u
v

1

⎤

⎦ = 0,

(11)

where E = C − BD, F = A − CD, Cr · P represents the
tangent of hyperbola at point P . This matrix form will be
very useful in model fitting.

4.2 Model fitting

As mentioned, we will fit model independently for left and
right lanes. Therefore, the image is deliberately separated
into right and left parts. For simplicity, we choose the ver-
tical center axis of the image as the separation line. If the
connected component is across the center axis, it will be
classified according to the number of pixels on each side. If
it has more pixels on the left, then it belongs to the left part
and vise versa.

To determine one model, four pixels are required. How-
ever, most of the time, there will be much more than four
candidate pixels. Moreover, some are outliers and multiple
models may exist. For such a multiple model fitting problem
with outliers, there are several popular techniques in the liter-
ature, such as sequential RANSAC, multiRANSAC, residual
histogram analysis, J-linkage, kernel fitting and energy min-
imization PEARL. As concluded by Fouhey [5] in his study,
sequential RANSAC is a strong first choice due to its effec-
tiveness.

As the name implies, sequential RANSAC implements
the RANSAC algorithm a number of times until all models
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Fig. 7 Inaccurate fitting examples (red pixles) from conventional
sequential RANSAC

are found or a certain number of iterations has been reached.
Once one model is determined, all its supporting data points
will be eliminated from the data set and RANSAC is run
through the remaining data points to look for another model.
However, when the previous model is not correctly selected,
the subsequent models will be affected as some of the data
points are eliminated wrongly. This occurs more often when
double lane lines are used at road bending. Figure below
illustrates examples of inaccurately fittedmodel (highlighted
as red) using sequential RANSAC.

To resolve this critical issue and better fit the lane line
detection, we propose the following modified sequential
RANSAC algorithm by adding a fusion step:

1. Randomly select four points from data set.
2. Create the model and find all its supporting data points.
3. Fuse the new model with previous models. If there are

common data points in the new model and the previous
ones, only the model with more data points will be kept
while the other is discharged. If no common data point
exist, the model will be taken as new. This valid because
there should not be any intersections between lane lines.

4. Repeat step 1–3 for a certain number of iterations. No
data point is eliminated as we do not want this model to
affect the consequent fitting results.

5. Up till this step, we have obtained models without any
intersection. To expedite the process, eliminate all the
supporting data points to these models and repeat step
1–3 with the remaining data set for a certain number of
times.

For example in Fig 7a, in one iteration, the inadequate
model represented by the red pixels is identified. In another,
the subsequent iteration, the accurate model represented by
the inner line, is also identified. Then it will be fused with
the inadequate model. Since they share some data points (the
red points at the top of the image), only the accurate model
is kept and the inadequate model is discharged because it has
less data points.

But if using conventional sequential RANSAC, once the
inadequate model is identified before the accurate model, all
the red pixels will be removed from the data pool. Almost
half of the inner line data points are removed wrongly: even
the accurate model can be identified later, it will not be kept
if the number of remaining inner line data points is less than
that of red data points.

The results from this modified sequential RANSAC are
several non-intersecting models from both sides. The next
step is to pair up models and select the best one from all the
possible pairs.

Before explaining the pairing mechanism, we would like
to elaborate more on step 2, which is the core of RANSAC.
Although any four arbitrary points (not on the same line) can
generate one unique hyperbola, not every result can describe
the road properly. Before searching for supporting data points
in step 2,weneed to validate themodel first. The explicit form
of A, B, C and D is shown in (12)–(15):

A = C0HEuEv/(4 cos
3(ϕ)) (12)

B = xcEu cos(ϕ)/(HEv) (13)

C = θEu/ cos(ϕ) + xcEu sin(ϕ)/H (14)

D = −tan(ϕ)Ev (15)

The first validation is on D. Its value varies within the
range determined by the physical limits of ϕ. The change of
ϕ is a direct result from the car suspension systems. When
its front suspension system is fully compressed and the rear
one is fully released, the camera points most downwards and
ϕ is maximum. When the front suspension system is fully
released and the rear one is fully compressed, the camera
points least downwards or even upwards and ϕ is minimum.
The nominal pitch angle ϕn can be calibrated when the car
is not moving and not loaded. By referring to the vehicle
catalog, we can calculate the maximum angle that the car
frame can be tilted, which corresponds to the two extreme
conditions. For the testing vehicle used, the maximum angle
is ∼ 3◦ or ∼0.035 rad. Therefore, the range of ϕ is approxi-
mated as [ϕn − 0.035, ϕn + 0.035].

With the valid D, A is further validated based on the road
curvature. The absolute value of A has to be less than the
value derived from the maximum allowable |C0| for a fea-
sible and safe turning. For a normal sedan, the minimum
feasible turning radius is∼10m limited by its steering angle.
Therefore, in this paper, the maximum allowable |C0| is set
as 0.1 m−1.

B and C are related to the vehicle pose. Since the vehi-
cle can be at any locations on the road, they should not be
constrained. In summary, we have defined a subclass of valid
hyperbolas based on camera pitch angle limits and road cur-
vature limit.

If it is not able to pass the validation on D or A, the next
iterationwill begin. Someweird fitting results (highlighted in
black) without adding these constraints are shown in Fig. 8.

As mentioned, two base models, hyperbola and straight
line, will be fitted simultaneously. This is done in step 2 as
well. The four randomly selected points can generate one
unique hyperbola and six lines. Out of these seven models,
only the valid model with most supporting data points will be
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Fig. 8 Wrong fitting results without constraint on hyperbola centre

Fig. 9 Perfect model for a straight road. a Original, b perfect line
extraction

kept. Supporting data points will be determined purely based
on Sampson’s distance ds [20]. If its ds < a threshold, the
point P will be classified as a supporting point.

ds = (PT · Cr · P)2

4
(
(Cr · P)21 + (Cr · P)22

) , (16)

where Cr is defined in (11) and (Cr · P)n refers to the nth
element of the vector. For straight lines, A = 0.

The reasons why a straight line is needed include the fol-
lowing:

1. To increase the successful rate in finding a valid model.
Fig. 9 illustrates a perfect lane line extraction for the
straight road with width of 3.4 m. By randomly selecting
4 points on one side, only about 9 % of the 1000 trials
is able to provide a valid hyperbola model. It indicates
that the rate of fitting is very low by using hyperbola only
even under the perfect situation, not tomention situations
when there exist noise pixels from the lane line extraction.
The original approach [16] suffers the same issue.

2. To increase the accuracy of the model, Fig. 10a plots the
number of supporting points for each of the successful
fitted models in ascending order. Fig. 10b illustrates their
corresponding row-wisemaximumdeviations. These two
figures indicate that out of the 9 % successful trials, only
half provides acceptable results in terms of number of
supporting points and maximum deviation. The maxi-
mum deviation mainly occurs at the top part of the image
as shown in Fig. 10d. Even among those successful tri-
als with small row-wise maximum deviations (from trial
60 onwards), the derived parameters from fitted models
are not consistent. Fig. 10c plots the D value derived
from the corresponding trials. Among the successful tri-
als, it varies from −1000 to 1000 while the ground truth
value is 42.8. As shown in (18)–(22), all the localiza-
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tion information is directly related to D. If this value is
not accurate enough, then the whole set of information
becomes invalid.

The numbers presented above may vary from trial to trial
and line to line, but it provides an idea of how a straight
line model helps in fitting a straight road and increasing the
accuracy.

4.3 Pairing and parallelism reinforcement

In the case that lane lines on both sides exist, a pairing step is
implemented right after all single models are captured. The
best pair is determined based on the number of supporting
data points and whether the lane width estimated from the
model is within a typical road lane width (∼3.4 m).

Equations (8), (9) will give the solution for lane width
L . However, most of the time, the results from independent
fitting will not follow the parallelism relationship exactly. In
turn, we will get a non-constant L . To compensate this and to
get the model as accurate as possible, the two paired models
need tobefine tuned andadjusted according to theparallelism
relationship defined by (8) and (9). This fine-tuning process
is called parallelism reinforcement.

It can be derived from (8) and (9) that if one lane model
follows (10), then the other lane model will be

u = A

v − D
+ B ′v + C + D(B − B ′) (17)

Equations (10) and (17) indicate that to fine tune a pair
of lane models, five points are required to determine the five
unknowns (A, B, B ′, C and D). However, the pair of lane
models are derived from eight points in model fitting step
(four for each side). To balance the contribution from both
sides, three out of the four points from one side and two out
of the other four points from the other side will be chosen.
In total, there will be 48 combinations to fine tune this pair
of lane lines. Out of these 48 combinations, the one with the
most supporting data points will be the final model for this
pair.

Just to highlight, the five unknowns cannot be solved in the
form of linear algebras. The set of equations consists of high-
order polynomials with multiple variables. Fortunately after
tedious conversions and substitutions, it can be downgraded
to one-third order polynomial equation with variable D only.
Close form solutions are available in the literature to get
the three roots explicitly [19]. The real root with the most
supporting points will be selected.

After finalizing all pair models, the one which has the
most supporting data points with lane width L within the
prescribed range will be used to describe the lane where the
vehicle is running.

The corresponding vehicle localization information can
be calculated as follows:

ϕ = arctan(−D/Ev) (18)

xc or dr = BHEv/(Eu cosϕ) (19)

C0 = 4Acos3ϕ/(HEuEv) (20)

θ = (C − Euxc sin ϕ/H) cosϕ/Eu (21)

L = xc + dr (22)

Note that even the lane line exists on one side only, the
localization information is still able to be calculated using the
same formula above. The only missing information is lane
width L .

5 Experiment validation and results

The following tests were carried out on a computer run-
ning Window7 OS with Intel i5 CPU processor (3.30 GHz).
The algorithm was programmed in MATLAB with mex-
C functions and was not optimized to run parallel threads.
The average processing time for one image is 0.12 s, of
which 20 % is for ridgeness calculation, 17 % for noise
filtering, 57 % for model fitting and 6 % for pairing and par-
allelism reinforcement. The processing speed is sufficient for
a vehicle moving at normal speed (∼70 km/h). Because the
look-ahead distance in the image is approximately 30 m, the
vehicle onlymoves 2–3m during one image processing time.

5.1 Noise filtering

The filter results in Sect. 3 using the proposedmethod and the
original method are compared both qualitatively and quan-
titatively. For the quantitative comparison, only 350 images
from 3 video clips are used due to the difficulties in obtain-
ing the ground truth. In each video, the images are sampled
consecutively at 10 Hz. The three video clips contain dif-
ferent challenging scenarios, such as breaking lines, dense
traffic and worn-off lane lines. The detailed challenges or
noise sources are tabulated in Table 1.

Two images from each video clip are shown in Fig. 11 as a
qualitative comparison. Column (b) contains the results from
the original approach [16] and column (c) contains results
from the proposed one.

The first row shows an example on simple images inwhich
little challenging scenarios exist. Both approaches are able to
identify the right double while lines. For the left boundary, it
is debatable whether it can be treated as lane marking or not.
The original approach cannot identify it but the proposed one
can.

The second row indicate that both approaches are able to
remove the noise from the horizontal speed regulation strip.

123



Vision-based approach towards lane line detection and vehicle localization 183

Table 1 Noise sources
contained in each video clip

Video Noise sources

1 Other markings, horizontal speed regulation lines

2 Other markings, tree/car shadow, breaking lines, dense traffic, worn-off markings

3 Other markings, tree/car shadow, breaking lines, horizontal speed regulation lines

Fig. 11 Noise filtering mechanism comparison (Col a Original images. Col b, c Image processing results from original approach [16] and the
proposed one)

The third row depicts the results on worn-off lane mark-
ings (left lane line). The proposed approach is able to identify
the three lane line segments counting from bottom on the left
but the original one almost fails.

In the fourth row, the nearby vehicle will lead to false
detection in the original approach as shown on the right top
corner of the image. The non-uniform road color on left side
of the image leads to more wrong detections as well in the
original approach.

The last two rows illustrate the performances of the two
approaches when there are strong tree shadows and letters in

the image. The original approach is not able to remove the
noise pixels effectively.

From the qualitative comparison, we can conclude that the
proposed approach performs similar to the original approach
on simple road scenarios (e.g. speed regulation strips). But
when the road surface becomes more erratic, non-uniform
and complex (e.g. tree shadows), the proposed approach is
more capable of removing noise pixels.

In the quantitative comparison, the ground truth is labelled
manually according to the 350 images.One example is shown
in Fig. 12c. Three ratios, commonly used in ROC (Receiver
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(a) (b)

White: Positive (lane)
Black: Negative (non−lane)

(c)

Green: TP
Blue: FP
Black: TN
Red: FN

(d)

Fig. 12 Illustration on ROC counting (TP true positive, FP false pos-
itive, TN true negative, FN false negative). a Original image, b ridge
detector, c ground truth, d ROC

operating characteristic) curve, are introduced for the quan-
titative evaluation.

True positive rate (TPR) = TP

P
(23)

False positive rate (FPR) = FP

N
(24)

Accuracy (ACC) = TP + TN

P + N
, (25)

where TP is the number of lane pixels labelled correctly as
lane line (true positive); FP is the number of non-lane pixels
erroneously labelled as lane line (false positive); TN is the
number of non-lane pixels correctly labelled as non-lane line
(true negative); P and N are the number of lane line and
non-lane line pixels.

A lower FPR and a higher TPR indicate better detection
results as it is closer to the perfect result with FPR = 0 and
TPR = 1.

Note the way of counting TP, FP and TN. Due to the fact
that the result from ridge detector is the lane line medial axis
instead of the whole lane area, if one pixel after the ridge
detector is classified as TP, all its connected pixels forming
the width of the lane on the same row in the ground truth
image will be counted as TP. If one pixel is classified as FP in
the ridge image, it will be expanded along row direction first.
Thewidth of expansion equals to 2 times of its corresponding
σd x (defined in Sect. 2, Eq. 1). For example, if the FP pixel
is at the last row and its corresponding σd x is 12, then the
number of FP pixels is approximated to be 2× 12 = 24. TN
number equals to the number of N minus FP pixels. Fig. 12
illustrates this process in detail. In Fig. 12d, Green represents
TP pixels, Blue represents FP, Black represents TN and Red
FN.

As mentioned before, the first filtering step is an adaptive
threshold on ridgeness values. To evaluate its performance,
we compare its TPR and FPR values to those resulted from
a series of fixed threshold as shown in Fig. 13. The blue dots
are obtained by setting the ridgeness threshold to the cor-
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Fig. 13 Average TPR and FPR comparison between ridgeness adap-
tive threshold and fixed-value threshold
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Fig. 14 Average TPR and FPR after each filtering step

responding fixed values and keeping the remaining filtering
steps the same.

The figure shows that the resulting point defined by
(FPR, TPR) is closer to the perfect point (0, 1) when using
the proposed adaptive threshold. This indicates that adaptive
threshold is able to improve the noise filtering performance
as compared to fixed-value threshold.

To further analyse the impact from each individual fil-
tering step, after running each step, the corresponding ROC
values of each image are logged and the average FPR and
TPR values over the 350 images after each step are plotted
in Fig. 14 (blue indicators).

As can be seen from the figure, the minimum structure
removal has the greatest impact in reducing the FPR, which
means the noise pixels are largely removed by this step. The
intensity check step can further improve FPR without sacri-
ficing TPR significantly.

The bridge connection step seems to have little impact
on FPR and TPR. But it is necessary. To verify this, another
filtering test on the same set of images is carriedout by remov-
ing this step but keeping the rest unchanged. The resulting
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(FPR, TPR) is shown as the red square in Fig. 14. The FPR is
further reduced as compared to the blue square, but the TPR
is reducedmore significantly, resulting in a longer distance to
the perfect point. The bridge connection step prevents some
true positive points from being removed by the minimum
structure removal step.

To further evaluate the performance of the proposed noise
filtering mechanism, we also compare its ROC values with
those obtained from the original approach [16]. Figure 15a–
c illustrate the comparison results frame by frame, where
the black dashed lines mark the separation of different video
clips.

For the first video, both approaches achieve similar per-
formances as the road conditions are relatively simple. But
when more challenging scenarios (e.g. tree shadows) come
into the image as shown in the second and third video, the
proposed algorithmwill scarify the TPR by a little and main-
tain a low FPR as compared to the original approach. This
trade-off strategy will improve the model fitting efficiency
significantly as to be shown later in this section. In other
words, the proposed algorithm will remove the noise pixels
more effectively. This observation is similar to that from the
quantitative comparison.

Overall, both methods achieve a similar TPR (the pro-
posed is slightly worse by 0.2 % only), but the proposed
method has much better performance in FPR (lower by 3 %)
and ACC (better by 3 %).

Figure 15d presents the (FPR, TPR) distribution for each
image. It is clear that the result cluster based on the proposed
method is closer to the perfect point (0, 1) than that from the
original method.

To further analyse the impact of the noise filtering mech-
anism on the model fitting process, define the following
variables:ω is the probability of choosing an inlier (TP) each
time a single point is selected from the lane line pixel can-
didates (TP + FP), p is the probability that the RANSAC
process produces a useful result, n is the number of points
needed to estimate model parameters and k is the number of
iterations for the RANSAC process. The following relation-
ships hold:

ω = TP/(TP + FP) (26)

1 − p = (1 − ωn)k (27)

Let the subscript p refer to the proposed method and o
refer to the original method, based on (23–25) and (26–27);
we can derive

kp
ko

· lg (1 − po)

lg(1 − pp)
=

lg
(
1 −

[
TPRo·P

TPRo·P+FPRo·N
]no)

lg
(
1 −

[
TPRp ·P

TPRp ·P+FPRp ·N
]n p

) (28)
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Fig. 15 ROC comparison between the proposed and original algo-
rithms based on 350 images. a TPR (true positive rate), b FPR (false
positive rate), c ACC (accuracy), d TPR vs. FPR distribution

123



186 X. Du, K. K. Tan

0 0.2 0.4 0.6 0.8 1
2

4

6

8

X: 0.99
Y: 2.103

pp

p p/p
o

Fig. 16 RANSAC probability analysis of the proposed (pp) and the
original (po) approach when running the same number of iterations

To facilitate the analysis, wewill use average values based
on the 350 images to substitute to the right-hand side of (28).
If assuming hyperbola, we can have

kp
ko

· lg (1 − po)

lg(1 − pp)
= 0.1382 (29)

where on average, P = 3672, N = 149928, TPRo = 0.987,
FPRo = 0.051, TPRp = 0.985, FPRp = 0.022, no=n p =4.

From (29), statistically, to achieve the same probability
p from RANSAC fitting (po = pp), the number of itera-
tions required in the proposed approach is only 13.8 % of the
original one. Furthermore, if running the samenumber of iter-
ations (kp = ko), the probability of the proposed approach
to get a useful model is always higher than that of the orig-
inal one as shown in Fig. 16, where x-axis is pp, varying
from 0.01 to 0.99 and y-axis is pp/po. When the proposed
approach has the probability of 99 % to find a useful model,
the original approach only has 47 %.

From the ROC analysis above, we can conclude that with-
out sacrificing the true positive detection rate very much
(worse by 0.2 % only), the proposed filtering mechanism
removes the noise pixelsmuchmore effectively than the orig-
inal method and thus it improves the detection accuracy and
RANSAC fitting efficiency.

5.2 Modified sequential RANSAC

For a better lane line fitting results, especially for double
lines, we modified the conventional sequential RANSAC
algorithmby adding in a fusion step. To evaluate themodified
RANSAC algorithm, we compared it with the conventional
one based on the first video clip. The first half of the video
contains single line marking and the second contains double-
line marking.

The fitting results from both algorithms were then com-
pared with the ground truth. Their row-wise maximum pixel
deviation from the ground truth is depicted frame by frame
in Fig. 17.

For the first half of the video, both algorithms perform
similarly in fitting single line markings; not much difference
is observed. But for the second half, the modified RANSAC
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Fig. 17 Line fitting comparison between modified and conventional
RANSAC in terms of maximum deviations
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Fig. 18 Comparison of fitting results between modified (column a)
and conventional (column b) RANSAC

algorithm obtains more accurate results when fitting dou-
ble line markings. The average maximum deviation is only
2.26 pixels for the modified algorithm and 5.63 pixels for
the conventional one. It is more often that the conventional
algorithm results in large fitting deviations. Two examples
are provided in Fig. 18. The major deviations of the conven-
tional algorithm are at the top of the images.

5.3 Simulation

As mentioned previously, the main intended application of
this project is to generate vehicle localization information
with respect to the road lane and thus enable autonomous
driving. This information can be calculated from equation
(18)–(22) based on the fitted model.

To verify the model fitting accuracy, we first tested our
algorithm on the simulator proposed in [16]. The simulator
simulates a sequence of road images (resolution 480 × 640)
captured by an onboard camerawhen changing its orientation
(θ and pitch angle), position (xc) and road geometry (L and
C0). The total number of images is about 2000. Then the
proposed approach is tested with the simulated road images
and all the unknown parameters for each image are back
estimated from the fitted model. At the end, the estimated
parameters are compared with the corresponding ones set up
in the simulator to evaluate the accuracy. Figure 19 is one
of the images generated by the simulator. The corresponding
parameters are given beside the figure.
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Fig. 19 Simulated road with corresponding parameters
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Fig. 20 Model accuracy evaluation

Figure 20 illustrates the comparison results of L , θ , xc
and C0 between the estimated model value (blue) and the
simulator ground truth (red). Most of the time, all the esti-
mated values are quite close to their true values. The most
prominent errors occur at the locations where road surface
is not flat (highlighted by green circles), which violates
the assumptions on model construction in Sect. 4.1. The
lane line markings in the image do not form hyperbolas
or straight lines. Figure 21 shows two fitting examples at
location 417 and 827, representing down-hill and up-hill sit-
uations, respectively.

Fig. 21 Inaccurate fitting examples at non-flat road surface
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Fig. 22 Model absolute error distribution

The absolute error distributions for the corresponding
parameters are shown in Fig. 22. Most of the time (∼90 %),
the absolute error for all the parameters is very small.

Compared to the original approach under four cases in
Table 2, in terms of root-mean square error, L , θ and xc are
always better. C0 is a little bit worse than the best perfor-
mance but better than the remaining three cases. n refers to
the number of discrete values assigned to the pitch angle in
the original approach. For a fair comparison, we only com-
pare our results to the original one without causal median
filter.
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Table 2 Lane model parameters comparison between proposed and
original approach (root-mean square error)

Parameter Proposed Original

n = 1 n = 3 n = 7 n = 41

L (m) 0.070 0.215 0.222 0.210 0.215

θ (degree) 0.94 1.09 1.75 1.54 1.56

xc (m) 0.116 0.25 0.26 0.26 0.26

C0 (m−1) 0.0029 0.0027 0.0050 0.0045 0.0046

Another important parameter related to localization is the
camera pitch angle, of which the simulation result is illus-
trated in Fig. 23. Top one is the proposed method while
bottom is original with n = 41 [16]. Zooming into the fig-
ures, we can see that the pitch angle from proposed method
is closer to ground truth despite several spikes arising while
the original approach provides a coarser results around the
true values due to the discrete noise. This indicates that pitch
angle can be back-calculated/estimated more accurately than
assigning a series of discrete values in advance and search-
ing for the best matching. The root mean square error for
the proposed approach is 0.1052 while it is 0.1249 for the
original approach.

The simulation results show that the proposed method,
evenwithout a priori accurate information of the camera pitch
angle, is still able to find a suitable model and generate more
accurate geometrical information related to vehicle localiza-
tion with respect to road lane. In addition, we also show that
pitch angle can be back estimated from the model and the
value is more precise than the original approach.

5.4 Real-world environment performance

In the literature, most authors tested their algorithms on high-
ways, where the road structure is well constructed most of
the time and the environment is more confined and more
predictable. To further challenge the capabilities of our algo-
rithm, we extended the test of the proposed approach on
normal roads around NUS (National University of Singa-
pore) instead of highways. The situation is more challenging
and erratic as shown in Fig. 26.

However, similar to other works, here we face the main
difficulties in obtaining precise ground truth. Theoretically,
to generate the ground truth, all the five parameters (L , C0,
θ , xc and ϕ) mentioned above need to be measured directly
at each frame. This is almost impossible by just using any
manual measuring instruments.

In [25], the author provides a method of approximating
these values based on high-precision GPS and accelerome-
ters, but it requires a lane-level digital map in place which is
still a research issue in itself. In [17], a side camera is incor-
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Fig. 23 Pitch angle comparison between proposed (top) and original
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blue line is the estimation results
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Fig. 24 Evaluation on model accuracy for real world testing

porated to measure the lateral offset from the lane line and
the side camera measurement serves as the ground truth for
the front camera. It is capable of providing the ground truth
for xc and θ , which are the most essential parameters for the
vehicle localization. Therefore, wemade use of this setup for
ground truth generation.

To eliminate the over fitting concern of the proposed
algorithm, in this experiment setup, we changed the camera
from the Logitech webcam (used in Sect. 5.1) to an indus-
trial CMOS camera. We also purposely offset the camera
mounting position from the car centre and misaligned the
camera optical axis with the vehicle longitudinal axis (point-
ing slightly to the side of the car instead of front).

Figure 24 illustrates the comparison results based on two
video clips (black vertical dashed line marks the separation
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Table 3 Fitting results error statistics

Mean Abs mean STD

θ (rad) −0.0131 0.0247 0.032

xc (m) 0.0018 0.0559 0.0811

Fig. 25 Inadequate model fitting examples (red lines) at non-flat road
surface

of the two videos). Both videos were taken at night and con-
tained solid/dash single linemarkings on one side of the road.
The noise sources include non-flat surface, poor illumination
conditions, warning letters and glare from the head lights of
incoming vehicles. Table 3 shows the corresponding mean
error, absolute mean error and the error standard deviation
for both parameters.

From the comparison, it is clear that most of the time, the
proposed algorithm is able to provide accurate and consistent
estimation on vehicle lateral distance xc to the road boundary
and its moving direction θ w.r.t road. The average absolute
error in xc is only 5.6 cm, which is even less than road lane
marking width.

The most prominent errors for both parameters, as high-
lighted by black circles in Fig. 24, occur at the locations
where the road surface is not flat and the road is curving.
This observation tallies with that from the simulation. Two
examples are illustrated in Fig. 25, where the fitted line (red)
slightlymiss-alignswith themedial axis of the lane linemark-
ings at the bottom of the image.

Another observation, similar to the simulation as well, is
the non-smoothing estimation, which fluctuates around the
ground truth values with small errors. From the statistical
analysis in Table 3, the estimation error can be approximated
as zero-mean white noise since their mean values are close to
zero. This implies that a Kalman filter can be implemented to
provide smoother andmore consistent results without spikes.

In Fig. 26, we present some quantitative fitting results
sampled from the testing sequence under different situations
as indicated under each image. Black lines (daytime vision
a ∼ j) and red lines (night vision k ∼ n) represent the fitted
results.

In this section, we demonstrate both qualitatively and
quantitatively that the proposed approach works well even
with strong disturbances coming into the images. It is capa-
ble to provide estimation on vehicle localization with respect
to road lane lines, which can be used as a feedback to control
an autonomous vehicle to follow the lane.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Fig. 26 Fitting results under different situations. a ∼ j daytime vision
(black line) and k ∼ n night vision (red line). a Lane line on one side
only b Sharp Turn, (c) Different Lighting, d Shadow, e Breaking Line
1, (f) Breaking Line 2, g Worn-out of lane line, h With other vehicles,
i Different lane line colors, j Different Road Surface, k Breaking lines,
l Poor illumination, m Glare, n Bending

In addition, when lane line exists on one side only
(Fig. 26a,l,n), the original approach will fail due to the nature
of the algorithm (detecting lane line on both sides simulta-
neously) but the proposed one is still able to detect the lane
line. Under situations with small irregularities on road sur-
faces (such as d and j), the original approach is not able
to remove noise pixels effectively and consequently it will
have a higher probability to fail as shown by the probability
analysis in Sect. 5.1.

123



190 X. Du, K. K. Tan

Fig. 27 Situations where both original and proposed approaches do
not work properly. a Non-stop yellow box, b Zebra crossing, c Before
zebra crossing, d Round-about, e Non-parallel lane lines, f Warning
letters

However, there are still extreme situations under which
both the proposed and original approaches may not work
satisfactorily. These situations include the following:

1. Other markings, which are similar to lane line markings,
may result in false detection. For example, the non-stop
yellow box (Fig. 27a) and zebra crossing (Fig. 27b).

2. Lane lines do not follow the hyperbola or straight line
assumptions. For example, before the zebra crossings, the
lane line is in zig-zag shape (Fig. 27c). At round-about,
it forms a circle (Fig. 27d)

3. Lane lines are not parallel. For example, at lanes merging
location, the lane line width shrinks (Fig. 27e).

4. Sometimes, warning letters on the road will lead to false
detection as well (Fig. 27f), especially when lane line
exists on one side only.

To address the first and second cases, additional special
indicators on the road can be implemented to indicate to
the algorithms that the vehicle is approaching these loca-
tions so that the results are interpreted accordingly. The false
detection resulting from warning letters can be filtered out
by adding a tracking step between consecutive images.

6 Conclusion

In this paper, we proposed a robust and reliable vision-based
road lane line detection approach which works even under
challenging road situations. We demonstrated that the fitted
model is capable of providing accurate estimation on vehi-
cle localization information with respect to road lane lines,
including the camera pitch angle ϕ, vehicle heading direction
θ , vehicle position to lane line xc or dr , road width L and

road curvature C0. This information, integrated with depth
sensing system, can be implemented in autonomous vehicle
navigation.

To further improve the proposed algorithm, a filtering
mechanism such as particle filter, incorporated with the vehi-
cle dynamics, will be implemented between consecutive
image sequences so that the vehicle pose estimation becomes
more consistent and smooth. The similar algorithm will be
migrated to stereo vision system to get the depth informa-
tion. The road curvature estimation will be fused with the
information from map and GPS to improve consistency.
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